第11章 アルデヒドおよびケトン

*水素結合

水素結合とは、分子間あるいは分子内に水素を介して形成される弱い結合である。例えば、水分子では、酸素の電気陰性度(3.5)の方が水素(2.1)に比べ大きいため、O-H 結合の酸素が $\delta-$ 、水素が $\delta+$ に分極している。これらが分子間、あるいは分子内で引き合い、水素結合を形成する。分子量が 18 の水分子が異常に高い沸点をもつのもこの相互作用が原因である。

(分子間水素結合)

$$H_3$$
C H_3 C

(分子内水素結合)

$$\beta$$
-ジケトン β -シケトン β -シケトン

*PCC の説明

第一級アルコールを CrO_3 や $KMnO_4$ などで酸化すると、アルデヒドを経てカルボン酸を生成する。選択的にアルデヒドを合成するには、クロロクロム酸ピリジニウム(PCC)を用いる。

$${\rm CrO_3}$$
 + $\sqrt[]{\rm N}$ + HCl \longrightarrow $\sqrt[]{\rm N}$ H ${\rm CrO_3Cl}$ \sim クロロクロム酸ピリジニウム(PCC)

*KMnO4酸化(酸、加熱)、オゾン分解、アルキンの水和反応

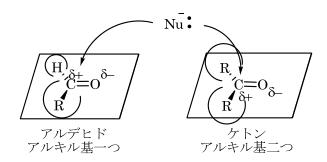
アルケンにアルカリ性 $KMnO_4$ 水溶液を低温で作用させると、1,2-ジオールが生成する。この反応は、進行と共に MnO_4 の赤紫色が消え、二酸化マンガン (MnO_2) の褐色沈殿が生じるため、アルケンの検出にも利用できる $(Baeyer\ test: バイヤーテスト)$ 。酸化剤として、四酸化オスミウム (OsO_4) でも同様の反応が進行する。

cis-1,2-シクロペンタンジオール

一方、アルケンと KMnO4 の反応を酸性溶液あるいは、加熱下で行うと、二重結合が開裂して、2 組のカルボニル化合物となる (カルボニル化合物がアルデヒドの場合は、再酸化を受けてカルボン酸となる、また、ホルムアルデヒドの場合は、二酸化炭素が生成物である)。

アルケンを酸化的に開裂する方法として、オゾン分解がある。アルケンのメタノール溶液にオゾン(O₃)を吹き込むと、中間体としてオゾニドが生成する。これを酢酸中、金属亜鉛で還元すると炭素 – 炭素二重結合の部分が開裂して酸素が結合した、二つのカルボニル化合物が生じる。

生成物の構造から、原料アルケンの構造を推定することも可能である。 アルキンへの水の付加には、酸触媒に加え硫酸水銀(Hg²+)も必要である。水銀イオンは、三重結合と錯体を形成して、続く付加反応の活性を高める。生成物は、マルコウニコフ型付加生成物で、最初の生成物であるビニルアルコール(エノール)は不安定で、異性化した後カルボニル化合物になる。アセチレンからはアセトアルデヒド、末端アルキンからはメチルケトン、そして、内部アルキンからはケトンが生成する。


R-C=C-H
$$H_2O$$
 H_2SO_4 , $HgSO_4$ $HgSO_4$

*立体的効果、電子的効果を、図を用いて解説

求核付加反応において、アルデヒドがケトンより高い反応性を示す理由として、立体的効果と電子的効果の二つが考えられる。

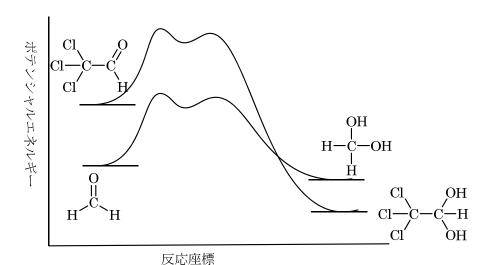
(立体的効果): 求核試薬のカルボニル炭素への近付きやすさを比較すると、カルボニル炭素についている置換基(アルキル基、アリール基)は、アルデヒドが一つ(もう一つは水素)なのに対して、ケトンは二つ存在するので、立体障害が大きい。

(電子的効果):カルボニル基についた置換基がアルキル基の場合、電子供与性なのでδ+に分極したカルボニル炭素に電子が供与されカルボニル基の分極が弱められる。この効果は、アルキル基が一つのアルデヒドよりケトンの方が影響が大きく、結果として求核試薬の攻撃を、アルデヒドよりケトンの方が受けにくくなる。

*酸触媒と塩基触媒の反応機構を解説

カルボニル化合物への水の求核付加は、酸でも塩基でも触媒される。 (酸触媒反応)

水は弱い求核剤であるが、プロトンがカルボニル酸素に付加することで、上記平衡反応のように炭素カチオン(カルボカチオン)が生成し、プロトン化されていない時より、カルボニル炭素の求電子性は上がるので反応できる。


(塩基触媒反応)

水酸化物イオン(OH·)は、水より求核性が高いので、反応は速やかに起こり、一つの炭素に二つの水酸基が結合した gem-ジオールを生成する

*ホルムアルデヒド、トリクロロエタナールの安定性をエネルギー図で解説

1つの炭素に2つのヒドロキシ基が結合した gem-ジオールは、不安定である。その理由は、負に分極した2つのヒドロキシ基(OH)が近く、静電反発を起こすからである。通常は、ジオールを単離しようとすると、逆反応が進行して、最終的にはアルデヒドと水に戻ってしまう(可逆反応)。

ホルムアルデヒドとトリクロロエタナールの水和反応の平衡定数は上式の通りで、水溶液中では、ほとんどがジオールの状態である。しかし、たいていのアルデヒドおよびケトンの水和物は、水中から単離はできない。例外的に、トリクロロエタナールの水和物は、安定な結晶性水和物(抱水クロラール; chloral hydrate)として得られ、鎮静剤や家畜の睡眠剤、麻酔剤として利用されている。これは、下図のように、逆反応の活性化エネルギーが十分大きいからである。

2,2,2-トリクロロエタン-1,1-ジオールが安定な理由は、ヒドロキシ基が 2 つ付いた $C\cdot O$ 結合の分極が、隣の強い電子求引基である CCl_3 基により弱められ、結果として、gem-ジオールの OH 基間の静電反発も弱くなるからである。

*保護基としてのアセタールを解説

アルデヒドおよびケトンのカルボニル基と 2 分子のアルコールが反応 するとアセタールになるが、代わりに 1,2-エタンジオール (エチレン グリコール) のようなジオールを用いると環状のアセタールが生じる。 (反応機構)

環状アセタールは過剰の酸性水溶液中で加水分解され、元のアルデヒドに戻る。しかし、環状アセタールの状態では、塩基性反応剤、有機金属反応剤、ヒドリド反応剤の攻撃を受けないので、カルボニル基の保護基(protecting group)として有用である。

*シアノ基の加水分解によるカルボン酸の生成を解説

シアノヒドリンのシアノ基は、酸により加水分解され、 α - ヒドロキシカルボン酸を生じる。

(反応機構)

OH
$$H-C-C\equiv N$$
 H^+ $H-C-C\equiv N-H$ $H-C-C=N-H$ $H-C-C-C=N-H$ $H-C-C-C-C=N-H$ $H-C-C-C-C-N-H$ $H-C-C-C-C-N-H$ $H-C-C-C-C-N-H$ $H-C-C-C-C-N-H$ $H-C-C-C-C-N-H$ $H-C-C-C-C-N-H$ $H-C-C-C-C-N-H$ $H-C-C-C-N-H$ $H-C-C-C-C-N-H$ $H-C-C-C-C-N-H$ $H-C-C-C-N-H$ $H-C-C-C-N$

*アルデヒドおよびケトンのイミン誘導体の一覧表(オキシム、ヒドラゾン、 セミカルバゾン

アルデヒドおよびケトン (カルボニル化合物) のイミン誘導体

窒素系反応剤	名 称	カルボニル誘導体	名 称
R-NH ₂	第一級アミン	C=N-R	イミン
H ₂ N-OH	ヒドロキシル アミン	C=N-OH	オキシム
H ₂ N-NH ₂	ヒドラジン	C=N-NH ₂	ヒドラゾン
$\begin{bmatrix} & & O \\ H & II \\ H_2N-N-C-NH_2 \end{bmatrix}$	セミカルバジド	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$	セミカルバゾン
HN-R ₂	第二級アミン	C = C	エナミン

これらのイミン類は結晶性がよく、固有の融点を示すことからアルデヒ ドおよびケトンの構造決定手段と利用されていた。

(補足)

ウォルフ・キシュナー還元(Wolff-Kishner)

ヒドラゾンは KOH と約 200° に加熱すると、カルボニル基(C=O)がメチレン (CH₂) に還元される。

$$C=O$$
 NH_2NH_2 $C=N-NH_2$ NOH NOH

反応例

(反応機構)

この他、カルボニル基をメチレンに変換する代表的な還元方法とし

て、クレメンゼン還元 (Clemmensen) がある。

$$\begin{array}{c|c}
& & & & & \\
& & & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

いずれの還元反応も、カルボン酸、二重結合、三重結合には影響を及ぼさない反応である。

*グリニャール試薬の調製法を復習 (ハロゲン化アルキルの章参照)

有機金属化合物 R-M は、金属の電気陰性度が小さいために $\delta-R-M^{\delta+}$ に分極しており、通常はM=MgXのグリニャール試薬(RMgX)、M=Liの有機リチウム化合物が使用される。グリニャール試薬は、マグネシウム原子に溶媒のエーテルが二分子配位して安定化している。

$$R-X$$
 + Mg $\xrightarrow{\mathcal{I}}$ $\xrightarrow{\mathcal{I}}$ $\xrightarrow{\delta-}$ $\xrightarrow{\delta+}$ $R-MgX$

グリニャール試薬は、水分や酸素に不安定で、無水条件下で、空気をなるべく避けて、窒素雰囲気下で反応を行う。

$$R-MgX \xrightarrow{H_2O} R-H + MgXOH$$

$$R-MgX$$
 RO-MgX H_2O ROH + MgXOH

*還元反応機構の解説

ヒドリド還元剤としては、水素化ホウ素ナトリウム(NaBH4)と水素化アルミニウムリチウム(LiAlH4)が代表的である。この2つを比べると、アルミニウムの方が電気陰性度が小さく、陽性(電子を相手に与えやすい)なので、B-HよりAl-Hの方がより分極し、ヒドリド性が高いので、LiAlH4の方がNaBH4より還元力は強い。

(NaBH4の反応機構)

水素化ホウ素ナトリウムは穏やかな還元剤であり、水やアルコールのような極性プロトン溶媒中でも反応する。この還元反応は、基質の立体

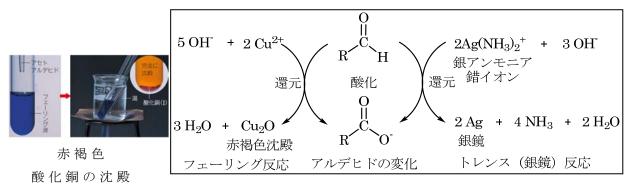
障害の影響を受けるので、アルデヒドの方がケトンより還元されやすい。

(LiAlH₄の反応機構)

$$\begin{pmatrix} CH_2CH_3 & CH_2CH_3 \\ H-C & O \\ CH_3 & A \end{pmatrix} + 4H_2O \rightarrow \begin{pmatrix} CH_2CH_3 \\ H-C-OH \\ CH_3 & CH_3 \end{pmatrix} + Al(OH)_3 + OH^2$$

*ケトンの酸化(Baeyer-Villiger 酸化)の解説

ケトンと過酸(ペルオキシカルボン酸)を反応させると、カルボニル基が酸化されてエステルになる(Baeyer-Villiger 酸化)。


(反応機構)

非対称ケトンの R 転位能は、メチル<一級アルキル<二級アルキル≑ アリール (フェニル) <三級アルキルの順番である。

*酸化反応機構を解説

アルデヒドは硝酸、 $KMnO_4$, CrO_3 , Ag_2O , 過酸、分子状酸素などの酸化剤により、容易にカルボン酸まで酸化される。一方、ケトンはその電子的、立体的要因によりアルデヒドより酸化されにくい。

アルデヒドの酸化されやすさは、裏返せば相手を還元する力(還元力) があることになり、フェーリング反応、トレンス試験はこの還元力を利 用したアルデヒドの検出試験ともいえる。

銀鏡の生成

いずれの反応も、アルデヒドは反応するが、ケトンでは反応しない。

実教出版 サイエンスビュー 化学総合資料(写真のみ)