	1				
番	訂正	E箇所	匠子	計工' +	
号	ページ	行	原文	訂正文	
1	88	23	$=\sqrt[3]{\frac{9.8\times(24\times60\times60\text{ s})^2}{4\pi^2\times6.4\times10^6}}=6.6$	(削除)	
2	107	33	問 72 理想気体の圧力を 1.0×10^5 Pa で一定にし、 3.0×10^2 J の熱を与え \underline{c} 2.0×10^{-3} m ³ 膨張させると、気体が外部に <u>する</u> 仕事と内部エネルギーの変化量は何 J か。	<u>たところ,1.2 × 10⁻³ m³ 膨張した。</u> <u>した</u>	
	340	15	問72 仕事: 2.0×10^2 J, 内部エネルギーの変化: 1.0×10^2 J	<u>1.2</u> <u>1.8</u>	
3	115	10-11	(1) 容器を縦向きにした <u>とき、</u> 気体の圧力 p と、ピストンまでの距離 L はいくらになるか。	後,気体の温度が T_0 になるまで待った。	
4	126	1	◆強め合う条件 波源が同位相で振動するとき、図 13 の時間の点	<u>刻</u>	
5	133	右段	(4) 点Pにある山は、0.2 s 前にはどこにあったか。		
		21-22	図に示せ。	点 P'として図に示せ。	
	340	[5] (4) 図	媒質 45° 媒質 P	媒質 I	
6	140	14	る音の波長 λ' [m] は,式 $\langle 12 \rangle$ より, $\lambda' = \frac{V - v_{0}}{f}$ となる。	$\lambda' = \frac{V - v_{\mathbf{S}}}{f}$	

番		E箇所	原文	訂正文
7	ページ 177	1.4	電気量の単位は C を用いる。 $1C$ は $1A$ の電流が $1s$ 間に運ぶ電気量の大きさとして定義される。このとき,電子と陽子 1 個あたりの電気量の大きさ e を電気素量といい,次のように表される。 e elementary electric charge $e=1.60\times 10^{-19}\mathrm{C}$	(削除) (削除) $\frac{\phi}{}$ 電気量の単位 $^{'}$ で $^{'}$ を用いて次のように表される $^{\circ}$ 。 $e=1.602176634\times 10^{-19}$ C ${}$
		側注	電子が 10 ¹⁹ 個集まると、 総電気量は — 1.60 C になるということです ね。	なお、A = C/s であり、1 A は1 C を1s 間で運ぶ電流の大きさである。 ② 電気素量 e は、真空中の光速 c と同様に、物理学の普遍定数である。したがって、式〈1〉は e によって単位 C を定義していると見なす方が適切である。
8	243	図 73	企図73 オシロスコープの正負	誘導電流の向き