				<u> </u>
番	訂正	箇所	原文	訂正文
号	ページ	行	//A/A	mæX
1	4	図 2	$1.37 \pm 0.01 \mathrm{cm}$ $3.54 \pm 0.01 \mathrm{cm}$ $4.8008 \sim 4.8990 \mathrm{cm}^2$	$1.37 \pm 0.01 \mathrm{cm}$ $3.54 \pm 0.01 \mathrm{cm}$ $4.8008 \sim 4.8990 \mathrm{cm}^2$
2	9	8-9	問 1 駅から徒歩8分と表示された家が、駅から640mの距離であった。人の歩く速さは、何m/sと想定されているか。	「駅から徒歩8分」と広告に掲載
3	11	4-8	予想してみよう A さんが一定の速さで、家から 200 m 歩	予想してみよう A さんが一定の速さで、家から 200 m 歩いてコンビニエンスストアに寄ったあと、コンビニエンスストアから 600 m 歩いて学校に着いた。家から直接学校へ向かうと、距離は何mか。ただし、家、コンビニエンスストア、学校は、すべて同じ通り沿いにあるものとする。 ① ▶ 200 m ② ▶ 400 m ③ ▶ 800 m ④ ▶ これだけではわからない
4	15	4-9	予想してみよう 流れのないプールでは 1.0 m/s の速さで泳ぐ P さんが、一定の速さ 0.40 m/s で流れる川を泳ぐ。上流から流されてくる浮き輪に向かって、4.0 m 下流にいる P さんが泳ぐとき、何 s で浮き輪にたどり着けるだろうか。 ①▶4.0 s 以下 ②▶4.0 s ③▶4.0 s 以上	<u>場所</u> <u>流れの</u> <u>の</u>

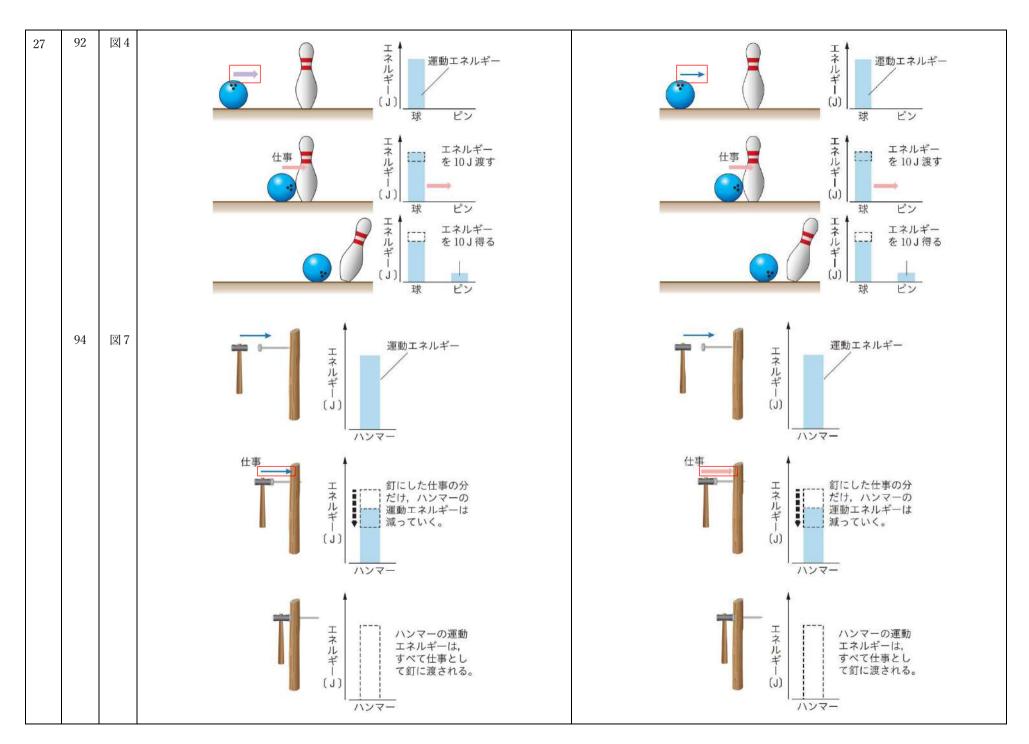
				HI 183 H 3 MI 182 183
番号	訂正ページ	箇所 行	原文	訂正文
5	16	20-22	問題 例題 1 において、川の流れる速さが 1.20 m/s に増えたとき、	図 3
6	20	発展 上図		
7	22	図 14	で (m/s) 1.0 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1.0 t (s)	0.8

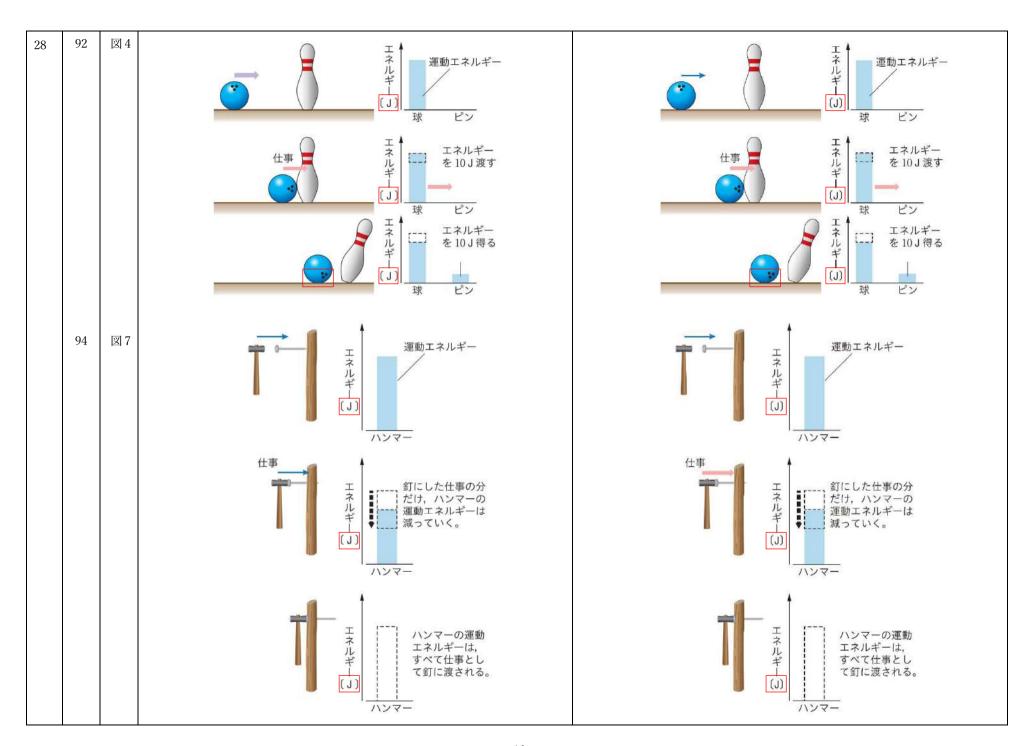
図書の記号・番号	物基 703
凶官り心力・笛ケ	170至103

番	訂正領	箇所	原文	訂正文
号	ページ	行		пшХ
8	30	表	時刻 [s] デープの 長さ [cm] 速度 [m/s] 0~0.04 0.04~0.08 0.08~0.12 0.12~0.16 0.20~0.24	<u>0.16∼0.20</u>
9	31	15	図 <u>27</u> のように,	28
10	32	Colu mn 図	9.805 9.804 9.803 -9.802 -9.801 -9.800 9.796 9.799 9.799 9.799 9.799 9.799 9.794 9.791	9.805 9.806 9.803 -9.802 9.800 9.796 9.799 9.799 9.799 9.799 9.799 9.794 9.791 ※ 背景は変更なし
11	36	19	$= -19.6 = 20 \mathrm{m}$	<u>-20</u>

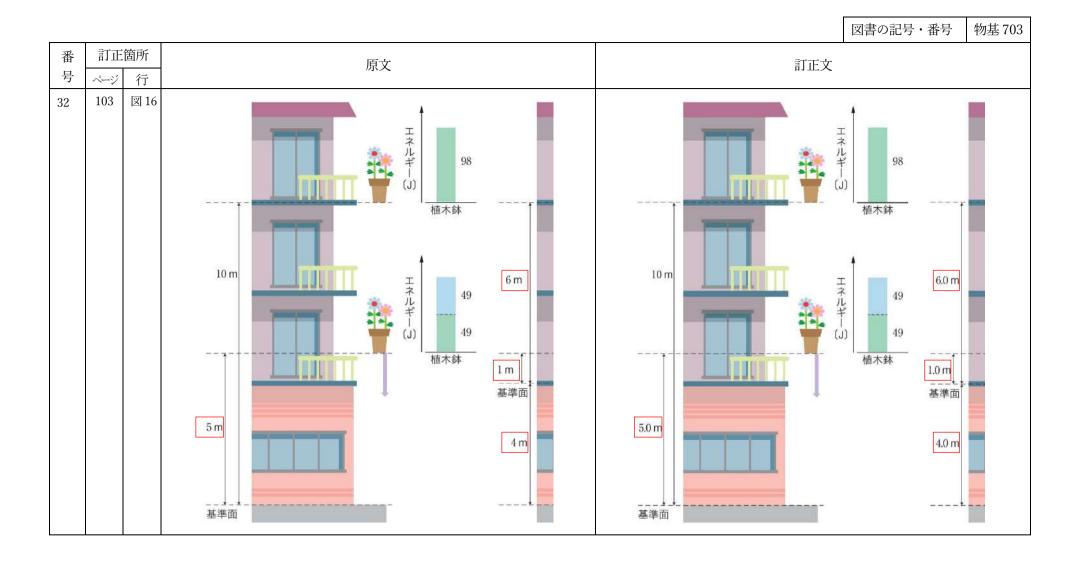
V 20 N

※ 背景は変更なし


¥ 20 N


番	訂正	箇所		
号	ページ	行	原文	訂正文
15	50	問 28	※ 1 ※ 2 物体 ・ 数本 ・ 数数 ・ 数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数	※1 ※2 物体 ***********************************
16	51	図 57	生徒 A が 生徒 B から 受ける力 生徒 A から 受ける力	生徒 A が 生徒 B から 受ける力 生徒 A から 受ける力
		図 58	人がロープから 引かれる力 引かれる力 ロープが大から 引かれる力 引かれる力	人がローブから 引かれる力 引かれる力 ローブが犬から 引かれる力 引かれる力
	52	参考図	A DEVY-B A B B	A カセンサー B B X 背景は変更なし

番号	訂正領ページ	箇所 行	原文	訂正文
	53	参 図	カ士が子どもから受けるカデュー・アンドルののでは、アンドルののでは、アンドルののでは、アンドルののでは、アンドルののでは、アンドルののでは、アンドルの	カ士が子ども から受ける力 $\overline{F_2}$ $\overline{F_1}$ $\overline{F_2}$ $\overline{F_1}$ $\overline{F_2}$ $\overline{F_3}$ $\overline{F_3}$ $\overline{F_3}$ $\overline{F_3}$
17	57	図 63	空気から 二酸化炭素から 受けるカ ドライ アイス 運動の向き 重力 重力	空気から 受ける力 受ける力 運動の向き 重力 重力
18	57	図 63	空気から 受ける力 受ける力 運動の向き 重力	空気から 受ける力 運動の向き 重力
19	57	図 63	空気から 受ける力 運動の向き 重力	空気から 受ける力 受ける力 運動の向き 重動の向き 重力


				HH 2 10 7 H 7 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10
番号	訂正箇ページ	所行	原文	訂正文
20	+	図 68 ・ャプ ィョン	☆図68 実験Aのストロボ写真	0.1 秒間隔で撮影したものを合成している。
	61 × ÷	☑ 70 ・ャプ ・ョン	☆図70 実験Bのストロボ写真	0.1 秒間隔で撮影したものを合成している。
21	65	₹ 75	正	mg
22		例題 11 中図	垂直抗力 N 動摩擦力 f' あらい斜面 $mg\cos 30^\circ$ 重力 mg	垂直抗力 N 動摩擦力 f あらい斜面 $mg\cos 30^\circ$ 重力 mg
23	76	下図	$F\sin\theta$ $F\cos\theta$ mg	$F \sin \theta \qquad F$ $f' \qquad N$ mg

番	訂正	箇所	原文	訂正文
号	ページ	行	<i>所</i> ス	山止入
24	79	14-24 図 87 図 88	大きな力がかかる状態を「圧力が大きい」ということがあるが、圧力とはどのような量だろうか。 かんじきの例をより詳しく調べるため、レンガをスポンジの上に置き、そのへこみ方を調べてみよう。レンガは同じ質量であるにもかかわらず、接触する面積が小さいほど、スポンジのへこみ方が大きくなる。これは、同一面積を押す力の大きさが異なっていることが原因である。つまり、押す力が同じでも、力を集中させたときと分散させたときでは、同じ面積にかかる力の大きさが異なるのである。そこで、単位面積あたりに加わる力を圧力とよび、1 m² あたりの面積を垂直に押す力で定義する。	大きな力がかかる状態を「圧力が大きい」ということがあるが、 全図87 かんじき 圧力とはどのような量だろうか。 かんじきの例をより詳しく調べるため、レンガをスポンジの上に置き、そのへこみ方を調べてみよう。レンガは同じ質量であるにもかかわらず、接触する面積が小さいほど、スポンジのへこみ方が大きくなる。これは、同一面積を押す力の大きさが異なっていることが原因である。つまり、押す力が同じでも、力を集中させたときと分散させたときでは、同じ面積にかかる力の大きさが異なるのである。そこで、単位面積あたりに加わる力を圧力とよび、1 m² あたりの面積を垂直に押す力で定義する。
25	81	式 〈38〉 図	大気圧 P。 水の密度 p 水圧 P 底面積 S	大気圧 P。 水の密度 P 水圧 P ※ 背景は変更なし
26	87	左段 19	図のように, 質量 <u>0.5</u> kg の物体を糸で	0.50

				図書の記号・番号 物基 703
番		箇所	原文	訂正文
号	ページ	行		
29	99	図 12		
		キャプ	企図12 仕事の正負と運動エネルギーの関係 緑色で示した力は、終始仕事をしない。	地面に対して垂直な
		ション		
30	100	図 13		
			v = -定 $v = -定$ 手が押す力	v=-定 $v=-定$ 手が押す力 動摩擦力
		例題 3	2.0 m A 1.0 kg 2.0 mg 60° mg mg	2.0 m A 1.0 kg 2.0 mg
31	100	例題 3	B 1.0 kg 1.2 N 1.2 N	2.0 m A 1.0 kg 1.2 N

				図書の記号・番号 物基 703
番号	-	箇所	原文	訂正文
33	ページ 140	行 問7		
33	140	図	AMAMAMAMAMAM	AMAMAMAMAMAM
34	147	8	問 10 速さ 1 cm/s で右に進む波があり、時刻 $t=\underline{0}$ のとき	<u>0 s</u>
35	147	図 22	1 1 1 1 1 1 1 1 1 1	<u>i=</u>

		T	
番号	訂正箇所ページ 行	原文	訂正文
36	151 右	図(a)は、ばねに波が生じていないときを表してい	<u>(7)</u>
30		て 経済が生じたまで瞬間 げわけ図(いのとうにち	<u>(1)</u>
	8-2	った。次の問いに答えよ。	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	<u> </u>	(1) 図(b)のとき、媒質の各点 e ~ i は、波が生じて	<u>(1)</u>
		いないときと比べてどのぐらい移動しているか。	<u> </u>
		$a \sim d$ の矢印のように図(c)に記入せよ。	<u>(ウ)</u>
		(2) 図 (c) にかいた x 方向の変位を、反時計回りに 90	<u>(ウ)</u>
		度回転させてy方向に変換し、図(d)に記入せよ。	(x)
		(3) 図(d)の矢印の先端をなめらかな線で結び、縦波	<u>(</u> ±)
		を横波のように表せ。	<u>~ /</u>
		(4) 点 $a \sim i$ の中から、図(b)のときに x 軸負の向き	(1)
		に動いている点をすべて選べ。	<u></u>
		(a) a (b) (c) (d) (e) (f) (g) (h) (i) (b) (b) (a) (b) (c) (d) (e) (f) (g) (h) (i) (i) (c) (d) (e) (f) (g) (h) (i) (i) (d) (e) (f) (g) (h) (i) (i) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(ア) a () (c) (d) (e) (f) (g) (h) (i) (プ) 波の進む向き (イ) (ウ) y (エ) O x
37	168 5)	5) 人の <u>声</u> の波長は,大体どのくらいの大きさか? (→p.154~155)	可聴音

番	訂正	箇所	T-Gke	717-b
号	ページ	行	原文	訂正文
38	173	Colu mn	その <u>弟師</u> ファラデー	<u>弟子</u> ※ 背景は変更なし
39	182	柱	抵抗のほとんどない部分に電位差が生じるように接続すること。 通常は大電流が流れ、塩化ビニルなどで覆われてない導線は、導線どうしが想定外に接触する可能性があり、危険である。	電圧をかける (削除) れるので危険である。 しないよう注意する必要がある。
40	237	下部	* 東子童は、IUPAC (回際株正・広用化 する。日本で参考された書画の登画に基 うき。日本で参考された書画の登画に基 内を、日本で表現の関本体では、1959ム 特官ではなって、ままの関本体存在は が一定していない元素については、同 に本の重要の一例を [] の中に示	新子童は、UPAC (田路県正・改冊化 等益的、で成まれた主部の数値に基 づき 日本化学会展子記書刊委員会が 19年1 1月 10 分数性を記して 4所 (実施商の大部の になって、大部の両の部分に、第20位 ではいたが大乗については、間位体の第 国数の一例を[]の中に示した。
41	240	左段 問8	問 8 (類題) 下流へ向かう場合:下流へ <u>2.2</u> m/s, 上流へ向かう場合:下流へ <u>0.2</u> m/s	2.20 0.20
42	241	左段 問28	問28 (類題) (1) x 軸方向: $\frac{\sqrt{2}}{2}T_1 - T_2 = 0$	$\frac{\sqrt{3}}{2}$
43	241	右段 問 12	問12 $x_1 = \frac{2mg}{k}$, $x_2 = \frac{mg}{k}$	

				図書の記号・番号 物基 703		
番			原文	訂正文		
号	ページ	行	1400	HILL		
44	242	左段				
		節末	[2] (1) 288 K (2) 15°C (3) $Q_1 + Q_2 = Q_3$	[2] (1) 288 K (2) 15°C (3) $Q_1 + Q_2 = Q_3$		
		問題	(4) $Q_1 = 7.5 \times 10^2 \text{J}$, $Q_2 = 1.3 \times 10^4 \text{J}$ (5) $3.5 \times 10^4 c \text{J}$ (6) 0.38J/(g·K)	(4) $Q_1 = 7.5 \times 10^2 \text{J}, \ Q_2 = 1.3 \times 10^4 \text{J}$ (5) $Q_3 = 3.5 \times 10^4 \text{C} \text{J}$ (6) 0.38J/(g·K)		
		[2]				
45	242	問7	y A x	O		
46	243	左段 節末 問題 [4] 図	波の進む向き aUble light Uit OOU gOU book of the control of the contro	波の進む向き		

(削除)

244 2段目

42

仕事をする

90

47

図書の記号・番号	物基 703
----------	--------

番	番 訂正箇所		原文	訂元女		
号	ページ			訂正文		
48	78	例題 13 解説 図	$mg \sin \theta$ $mg \cos \theta$ $mg \equiv$	$mg \sin \theta$ $mg \cos \theta$ mg mg		
49	153	参考図	図 (a) ある時刻 t におけるおんさの前後の音波と媒質のようす y O O	図 (a) ある時刻 t におけるおんさの前後の音波と媒質のようす		

					図書の記号・番号	物基 703
番	訂正	箇所	原文			
号	ページ	行	////X	HJILL		
50	108	20	問 10 地面から 2.5 m の高さから、質量 0.20 kg のボールを、水平に 1.0 m/s の速さで投げた。このボールが地面に着く直前の速さはいくらになるか。ただし、重力加速度の大きさを 9.8 m/s² とする。	<u>地上</u>	<u>を求めよ</u> <u>, √2 = 1.41</u>	<u>とする</u>
	241	右段	問10 <u>7.0</u> m/s	7.1.		
		問 10				