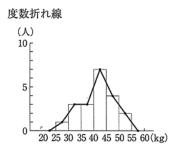
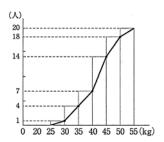

2章 データの整理

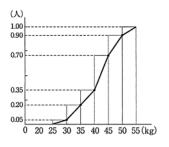

1. 1次元のデータ (P.38~55)

練習1

度数分布表

階級(kg)	階級値	度数
以上~未満	(kg)	(人)
25~30	27.5	1
30~35	32.5	3
35~40	37.5	3
40~45	42.5	7
45~50	47.5	4
50~55	52.5	2
合計		20




練習 2

階級(kg) (以上~未満)	度数	相対度数
25~30	1	0.05
30~35	3	0.15
35~40	3	0.15
40~45	7	0.35
45~50	4	0.2
50~55	2	0.1
計	20	1

練習3

階級(kg)	市粉	相対度数	男鴰庰粉	累積相対
(以上~未満)	及奴	们对反数	术侧反蚁	度数
25~30	1	0.05	1	0.05
30~35	3	0.15	4	0.20
35~40	3	0.15	7	0.35
40~45	7	0.35	14	0.70
45~50	4	0.20	18	0.90
50~55	. 2	0.10	· 20	1.00
合計	20	1		

グラフより

35kg 以上 50kg 未満は 14 人, 70%

$$\frac{1}{7}(10+25+60+30+45+5+35)=30$$
 よって、 $30(分)$

練習 5

垂直跳び(cm)	階級値	B組	
(以上~未満)	(cm)	DAH	
30~40	35	2	70
40~50	45	4	180
50~60	55	6	330
60~70	65	6	390
70~80	75	2	150
計		20	1120

上の表より、平均値は $1120 \div 20 = 56$ よって、56cm

練習6

(1) データ数が9個であるから、中央値は、小さい方から数えて

$$\frac{9+1}{2} = \frac{10}{2} = 5 \ (\$\exists)$$

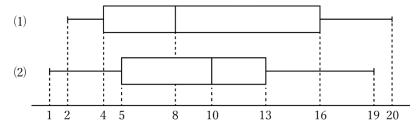
よって, 中央値は, 40

(2) データ数が10個であるから、中央値は小さい方から数えて

$$\frac{10+1}{2} = \frac{11}{2} = 5.5$$

よって、中央値は5番目の35と6番目の40の平均値

$$\frac{35+40}{2}=37.5$$


練習7

- (1) 最頻値は30
- (2) 最頻値は16と20

$$Q_1 = \frac{3+5}{2} = 4$$
, $Q_2 = 8$, $Q_3 = \frac{15+17}{2} = 16$

$$Q_1 = 5$$
, $Q_2 = \frac{9+11}{2} = 10$, $Q_3 = 13$

練習9

四分位範囲を求めると

$$(1)$$
l‡ $Q_3 - Q_1 = 16 - 4 = 12$

$$(2)l \ddagger Q_3 - Q_1 = 13 - 5 = 8$$

よって、(2)の方が中央値への密集度が高いと考えられる。

(1)
$$\frac{1}{5}(6+4+2+8+5) = \frac{25}{5} = 5$$
$$\frac{1}{5}\{(6-5)^2 + (4-5)^2 + (2-5)^2 + (8-5)^2 + (5-5)^2\}$$
$$= \frac{1}{5}(1+1+9+9+0) = \frac{20}{5} = 4$$
よって、分散は 4

練習 1

(1)
$$\overline{x} = \frac{1}{5}(1+2+4+5+8) = \frac{20}{5} = 4$$

$$\overline{x^2} = \frac{1}{5}(1^2+2^2+4^2+5^2+8^2)$$

$$= \frac{1}{5}(1+4+16+25+64) = \frac{110}{5} = 22$$

よって、分散 $s^2 = \overline{x^2} - (\overline{x})^2 = 22-4^2 = 6$
(2) $\overline{x} = \frac{1}{7}(1+5+7+6+2+4+10) = \frac{35}{7} = 5$

$$\overline{x^2} = \frac{1}{7}(1+25+49+36+4+16+100) = \frac{231}{7} = 33$$

よって、分散
$$s^2 = 33 - 5^2 = 8$$

よって、分散
$$s^2 = 40.2 - 6^2 = 4.2$$

練習 13

階級値x	度数 f	xf	x^2f
2	2	4	8
6	5	30	180
10	18	180	1800 -
14	11	154	2156
18	4	72	1296
合計	40	440	5440

上の表より
$$\overline{x} = \frac{440}{40} = 11$$

$$x^2$$
の平均値 $\overline{x^2}$ は $\overline{x^2} = \frac{5440}{40} = 136$

よって,
$$x$$
 の標準偏差 s は $s = \sqrt{136 - 11^2} = \sqrt{136 - 121} = \sqrt{15}$ ($= 3.87$)

仮平均を65とし階級の幅が10であるから

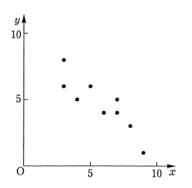
$$u = \frac{x - 65}{10} \quad \text{if } t \supset \tau,$$

新しい変量uを定めると,

右の表より

$$\frac{-}{u} = \frac{-35}{50} = -0.7$$

$$s_u = \sqrt{\frac{165}{50} - (0.7)^2} = \sqrt{3.3 - 0.49}$$
$$= \sqrt{2.81} = 1.68$$


よって
$$\bar{x} = 10\bar{u} + 65 = -7 + 65 = 58$$

 $s_u = 10s_u = 10 \times 1.68 = 16.8$

x	f	и	uf	u^2f
5	0	-6	0	0
15	1	-5	-5	25
25	2	-4	-8	32
35	4	-3	-12	36
45	8	-2	-16	32
55	10	-1	-10	10
65	15	0	0	0
75	5	1	5	5
85	4	2	8	16
95	1	3	3	9
合計	50		-35	165

2章 データの整理

2.2 次元のデータ (P.56~63)

練習1

図より, 負の相関関係があるといえる。

練習 2

	45~50	50~55	55~60	60~65	65~70	70~75	合計
500~550						1	1
450~500					1		1
400~450			1,				1
350~400	1	2	1				4
300~350		1					1
合計	1	3	2	0	1	1	8

練習3

c: $(60-48)\times(35-57)=-264$

$$\overline{x} = \frac{1}{5}(6+5+3+2+4) = \frac{20}{5} = 4$$

$$\overline{y} = \frac{1}{5}(3+4+4+5+4) = \frac{20}{5} = 4$$

より、次の表ができる。

x	y	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(y-\overline{y})^2$	$(x-\overline{x})(y-\overline{y})$
6	3	2	-1	4	1	-2
5	4	1	0	1	0	0
3	4	-1	0	1	0	0
2	5	-2	1	4	1	-2
4	4	0	0	0	0	0
合	計	0	0	10	2	-4

上の表から世界史と数学の相関係数 r は

$$r = \frac{-4}{\sqrt{10} \cdot \sqrt{2}} = -\frac{2}{\sqrt{5}} \quad (= -0.89)$$
$$\overline{z} = \frac{1}{5}(1) = 5$$

より、次の表ができる。

x	Z	$y - \overline{y}$	$z - \overline{z}$	$(y-\overline{y})^2$	$(z-\overline{z})^2$	$(y-\overline{y})(z-\overline{z})$
3	2	-1	-3	1	9	3
4	4	0	-1	0	1	0
4	6	0	1	0	1	0
5	6	1	1	1	1	1
4	7	0	2	0	4	0
合	計	0	0	2	16	4

上の表から数学と物理の相関係数 r は $r = \frac{4}{\sqrt{2}\sqrt{16}} = \frac{1}{\sqrt{2}} = 0.71$

2章 データの整理

章末問題 (P.64)

1

(1) 平均値は

$$\frac{1}{20}(5 \times 2 + 15 \times 6 + 25 \times 4 + 35 \times 4 + 45 \times 4) = \frac{520}{20} = 26$$

よって, 平均値 26 点

20 人いるので、 $\frac{20+1}{2}=10.5$ より中央値は 10 番目と 11 番目の平均値である。

10番目と11番目の階級値はとも25点より中央値25点 度数分布表から最頻値15点

(2) 階級値をx, 度数をfで表すと次の表のようになる。

階級値x	度数 f	xf	x^2f
5	2	10	50
15	6	90	1350
25	4	100	2500
35	4	140	4900
45	4	180	8100
計	20	520	16900

$$(1)$$
 \downarrow 0 , $\bar{x} = 26$

また、
$$x^2$$
の平均値 $\overline{x^2}$ は $\overline{x^2} = \frac{16900}{20} = 845$

よって、分散
$$s^2$$
 は $s^2 = 845 - 26^2 = 169$
したがって、標準偏差 s は $s = \sqrt{169} = 13$

2

(1) 変量
$$x$$
, u の平均値を \overline{x} , \overline{u} とする。
$$x = 5u + 12.5 \ \text{であるから} \ \overline{x} = 5\overline{u} + 12.5$$

$$\overline{u} = \frac{1}{50} (u_1 + u_2 + \dots + u_{50}) \ \text{であるから}$$

$$\overline{x} = 5\left(\frac{-8}{50}\right) + 12.5 = 11.7$$

(2) 変量 x, u の標準偏差を s_x , s_u とすると, x = 5u + 12.5 より $s_x^2 = 5^2 s_u^2$ よって

$$S_u^2 = \overline{u^2} - (\overline{u})^2 = \frac{38}{50} - \left(-\frac{8}{50}\right)^2 = \frac{1836}{2500}$$

よって

$$s_x^2 = 5^2 s_u^2 = 25 \times \frac{1836}{2500} = 18.36$$

(1)
$$\overline{x} = \frac{1}{20} (1 \times 4 + 2 \times 10 + 3 \times 6) = \frac{42}{20} = 2.1$$

 $\overline{y} = \frac{1}{20} (1 \times 6 + 2 \times 10 + 3 \times 4) = \frac{38}{20} = 1.9$

(2)
$$\overline{x^2} = \frac{1}{20} (1^2 \times 4 + 2^2 \times 10 + 3^2 \times 6) = \frac{98}{20} = 4.9$$

$$\overline{y^2} = \frac{1}{20}(1^2 \times 6 + 2^2 \times 10 + 3^2 \times 4) = \frac{82}{20} = 4.1$$

$$s_{y} = \sqrt{4.1 - 1.9^2} = \sqrt{0.49} = 0.7$$

(3) x, y の共分散 s_{xy} は

$$s_{xy} = \frac{1}{20} \{ (1 - 2.1)(1 - 1.9) \times 2$$

$$+ (2 - 2.1)(1 - 1.9) \times 4$$

$$+ (1 - 2.1)(2 - 1.9) \times 2$$

$$+ (2 - 2.1)(2 - 1.9) \times 6$$

$$+ (3 - 2.1)(2 - 1.9) \times 2$$

$$+ (3 - 2.1)(3 - 1.9) \times 4 \} = 0.31$$

(4) (3)より相関係数 r は

$$r = \frac{s_{xy}}{s_x s_y} = \frac{0.31}{0.7 \times 0.7} = 0.632 \dots = 0.63$$

(1)								
(1)	国\英	3	4	5	6	7	8	合計
	9						1	1
	8					1		1
	7				2			2
	6			1		1		2
	5		1	1				2
	4	1						1
	2		1					1

(2)								
(2)	番号	国語X	英語Y	$x - \overline{x}$	$y - \overline{y}$	$(x-\overline{x})^2$	$(y - \overline{y})^2$	$ (x-\overline{x})(y-\overline{y}) $
	1	8	7	2	1.5	4	2.25	3
	2	5	4	-1	-1.5	1	2.25	1.5
	3	9	8	3	2.5	9	6.25	7.5
	4	`3	4	-3	-1.5	9	2.25	4.5
	5	6	7	0	1.5	0	2.25	0
	6	7	6	1	0.5	1	0.25	0.5
	7	5	5	-1	-0.5	1	0.25	0.5
	8	6	5	0	-0.5	0	0.25	0
	9	7	6	1	0.5	1	0.25	0.5
	10	4	3	-2	-2.5	4	6.25	5
	合計	60	55	0	0	30	22.50	23
	平均值	6.00	5.50					

平均值 : 国語 6 点, 英語 5.5 点標準偏差: 国語 1.7 点, 英語 1.5 点

(3) (2)より

$$s_x = \sqrt{\frac{30}{10}} = 1.73$$

$$s_y = \sqrt{\frac{22.50}{10}} = 1.5$$

$$s_{xy} = \frac{23}{10} = 2.3$$

よって、相関係数は $r = \frac{2.3}{1.73 \times 1.5} = 0.90$