実教出版「工学系の力学」正誤表 (第1刷用)

本書には下記のような誤りがありました。おわびして訂正いたします。

頁	行	誤	正
29	例題 2-1	この力を送る x , y 方向の成分を用い	この力の x , y 方向の成分を表せ。
	問題文2行	て表せ。	
35	例題 2-8		
	略解2行	$=\frac{0.3090}{0.8090}300=115N$	$=\frac{0.3420}{0.8660}300=118N$
		0. 0000	0. 0000
	 略解 3 行	$= \frac{0.5878}{0.8090}300 = 218N$	$= \frac{0.6427}{0.8660}300 = 223N$
48	式 2-25	0.8090 $N = \mathbf{r} \times \mathbf{F}$	0.8660 $N = r \times F$
40	14, 2-25	$N = \mathbf{r} \times \mathbf{r}$	$N = r \times F$
	その2行下	N はモーメントベクトル	N はモーメントベクトル
49	側注【2】	$N = r_x F_y - r_y F_x$	$N = r_x F_y - r_y F_x$
51	例題 2-21		
	略解 7行	大きさ5の	大きさ 5N・m の
	最下行	反時計まわり (正の向き)	時計回り(負の向き)
54	問題 4		
	問題 1行	点 P (1m, 6m)	点 P (6m, 1m)
	図	(1m, 6m)	(6m, 1m)
54	2-3 ドリル問		*
	題 問題7の図		
55	回題 (の図 2-3 演習問題	前問の3つの力と同等な単一の力(力	前問の3つの力と等価な力の大きさとその作
00	2-3 假白问题 5.	前向の3つの分と同等な単一の分(分 のモーメントは0)とその作用点を求	
		めよ。	線の距離とは点から直線におろした垂線の長
			さのことである。
257	計算問題の解	点 C, $\left(-\frac{3}{2}N, -\frac{\sqrt{3}}{2}N\right)$	$\left \frac{3}{2}l \right $
	答 9_9 滨羽即斯	2 2 2 7	
	2-3 演習問題 5. の解答		
F 6			
58	9 行	mgr	mgr
		l l	$\sqrt{l^2-r^2}$
65	例題 2-30		
	略解	$R_{y1} = \frac{2\sqrt{3} + 1}{4}, R_{y2} = \frac{2\sqrt{3} + 3}{4}$	$2\sqrt{3}+1$ $2\sqrt{3}+3$
	最後の行	$K_{y1} = \frac{1}{4}$, $K_{y2} = \frac{1}{4}$	$R_{y1} = \frac{2\sqrt{3} + 1}{4}F$, $R_{y2} = \frac{2\sqrt{3} + 3}{4}F$
66	例題 2-31 略解		
	3 行	$-mg\cos 30^{\circ} + T\cos 15^{\circ} = 0$	$-(mg\cos 30^\circ)\frac{l}{2} + (T\sin 15^\circ)l = 0$
			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	 5 行	macos30° ~	cos30° p cos30°
	0.11	$T = \frac{mg\cos 30^{\circ}}{\cos 15^{\circ}}, R_{\chi} = mg\cos 30^{\circ}$	$T = mg \frac{\cos 30^{\circ}}{2 \sin 15^{\circ}}$, $R_{\chi} = mg \frac{\cos 30^{\circ}}{2 \tan 15^{\circ}}$
			, 1
	6 行	$R_y = (1 + \cos 30^\circ \tan 15^\circ) mg$	$R_y = mg\left(1 + \frac{1}{2}\cos 30^\circ\right)$
			/
_			

75	(3-5)式	$Fb=F_bb_1$	$Fb=F_1b_1$
81	3-1 演習問題 3	ΓN: /27	[n_]
	2 行 3 行	$[N/m^2]$ $p_0 = 0.1$ MPa	[Pa] p ₀ = 100 000 Pa
110	21 行 式 4-28 のタイ	回転数(rps)	回転数(rpm)
	トル	<u> Птаж(гра)</u>	шта <i>у</i> х(трш)
121	側注【1】 下から3行	$2(\dot{r}\cdot r + r\cdot \ddot{r})$	$2(\dot{r}\cdot\dot{r}+r\cdot\ddot{r})$
	下から317 下から2行	$r = r_{\rm p} - v_{\rm A}$	$r = r_{\rm p} - r_{\rm A}$
161	図 6-1 (b)	Fd	Fe
166	下から4行	を偏心していると	が偏心していると
170	例題 6-5	M	M
	略解 4行	$=\frac{M}{2\pi a^2}$	$=\frac{M}{\pi a^2}$
170	例題 6-5	△	B
170	略解	$I = \int dI = \int r^{3} \mu 2\pi r dr = \rho 2\pi \left[\frac{1}{4} r^{4} \right]^{a} = \frac{\pi}{2} \mu a^{4}$	$I = \int_{V} dI = \int_{0}^{a} 2\pi \mu r^{3} dr = 2\pi \mu \left[\frac{1}{4} r^{4} \right]_{0}^{a} = \frac{\pi}{2} \mu a^{4} = \frac{1}{2} Ma^{2}$
	最後の行	\mathbf{J}_V \mathbf{J}_0	Jv J ₀ =
171	例題 6-7 略解の 1 行	直径	半径
	Mは74年 ヘン 1 人1		
172	例題 6-8		
	タイトル 問題の 1 行	長方形板 長方形板	長方形部材 長方形部材
170	略解の1行	長方形板	長方形部材
173	例題 6-9 略解	$I_{\rm G} = I + \rho \left(2a^2 + \frac{\pi a^2}{2}\right) x_{\rm G}^2$	$I_{\rm G} = I - \rho \left(2a^2 + \frac{\pi a^2}{2} \right) x_{\rm G}^2$
	最後の式 (2 行分)		
	(4 11)))	$= 2.12\rho a^4 + 0.0311\rho a^4$ $= 2.15\rho a^4$	$= 2.12\rho a^4 - 0.0311\rho a^4$ $= 2.09\rho a^4$
173	下から6行	= 2.13 <i>pu</i> 直交座標系O- <i>xyz</i> を固定する	= 2.09 <i>ρα</i> 直角座標系O- <i>xyz</i> をとる
179	例題 6-11		
110	略解 19 行	$= \frac{1}{24} \rho 2b^{3} \left(4b^{2} + b^{2}\right) + \rho 2b^{3} \left\{ \left(\frac{b}{2}\right)^{2} + b^{2} \right\}$	$= \frac{1}{12}M(4b^2 + b^2) + M\left\{\left(\frac{b}{2}\right)^2 + b^2\right\} = \frac{5}{3}Mb^2$
		(, ,)	$\left \begin{array}{ccc} -\frac{1}{12} M \left(\frac{1}{12} V + V \right) + M \left(\frac{1}{2} \right) & + V \right = \frac{1}{3} M V$
		$=\frac{35}{24}Mb^2$	
192	例題 7-8 略解 (2)	$-\{1\text{kg}\times(-1)\text{m/s}\}=$	$-1m\times\{1kg\times(-1)m/s\}=$
	₩ロ <i>竹</i> 牛 (᠘)		


194	2~3 行 目タイトル	剛体の直線運動の運動量	並進と回転を同時に受ける剛体の運動量と角 運動量
194	16~17 行 (⊿L=の式)	$\Delta L = \rho \{\dot{x}_{G} - r\omega \sin(\theta + \phi)\} r \sin(\theta + \phi) \Delta V$ $+ \rho \{\ddot{y}_{G} + r\omega \cos(\theta + \phi)\} r \cos(\theta + \phi) \Delta V$ $= \rho \omega r^{2} \Delta V$	$\Delta L = -\rho \{\dot{x}_{G} - r\omega \sin(\theta + \phi)\} r \sin(\theta + \phi) \Delta V$ $+ \rho \{\dot{y}_{G} + r\omega \cos(\theta + \phi)\} r \cos(\theta + \phi) \Delta V$ $= \rho \omega r^{2} \Delta V + \rho r \{-\dot{x}_{G} \sin(\theta + \phi) + \dot{y}_{G} \cos(\theta + \phi)\} \Delta V$
205	例題 7-22 問題 1 行	1500rpm	1 2 0 0 r p m
205	下から3行	,質点の位置や・・・・	,位置や・・・・
	下から2行	・・エネルギーを [6]	・・エネルギーをポテンシャルエネルギー ^[6]
207	例題 7-23 略解 2 行	••=139 Ј	··=139 kJ
210	例題 7-27 問題 2 行 4 行 略解 1 行	円筒 円筒 円筒	円柱 円柱 円柱
010	注10 1行	円筒	円柱
218	例題 7-33 中の 図	R	r
223	式 7-108 (前半)	$-\frac{d}{dx}V(x) = -\frac{d}{dx}$	$\frac{d}{dx}V(x) = \frac{d}{dx}$
	式 7-108 (後半)	mg - kx = 0	-mg+kx=0
224	3 行	$-\frac{d}{dx}V(x) = mgx - k_1x + k_2(l - x)$	$\frac{d}{dx}V(x) = -mg + k_1x - k_2(l-x)$
	例題 7-38 略解 5 行	$-\frac{d}{d\theta}V(\theta) = -mgc + k_1a^2\theta + k_2b^2\theta = 0$	$\frac{d}{d\theta}V(\theta) = mgc - k_1 a^2 \theta - k_2 b^2 \theta = 0$
	略解 6行	$\theta = \frac{mgc}{k_1 a^2 + k_2 b}$	$\theta = \frac{mgc}{k_1 a^2 + k_2 b^2}$
223	19 行	$\frac{d_2}{dx^2}V$	$\frac{d^2}{dx^2}V$
245	下から2行 下から1行	点 P 点 P	点 A 点 A
257	計算問題の解答 2-3 演習問題 4.	$\frac{\sqrt{3}}{2}l[\text{Nm}]$	$\frac{3\sqrt{3}}{2}l[\text{Nm}]$

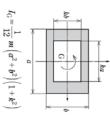
257	計算問題の解答 2-4 演習問題 1.	2800N	1600N
257	計算問題の解答 2-5 ドリル問 題 問題2	張力 $2mg\cos 22.5^{\circ}$ x 成分 $2mg(\cos 22.5^{\circ})^2$ y 成分 $\left(\frac{2+\sqrt{2}}{2}\right)mg$	張力 $mg\cos 22.5^{\circ}$ x 成分 $mg(\cos 22.5^{\circ})^2$ y 成分 $\left(\frac{4+\sqrt{2}}{4}\right)mg$
258	計算問題の解答 3-1 ドリル 問題 問題 9	600N, 左端から1. 22m	400N, 左端から1. 17m
後見返し			(次ページに掲載のものに変更いたします)

さまざまな物体の慣性モーメント

細長い棒の重心まわりの慣性 モーメント

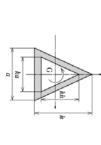
 $I = \frac{1}{3} mL^2$

球の重心まわりの慣性モーメント $I_{\rm G} = \frac{2}{5} \, mR^2$

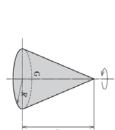

球殻の重心まわりの慣性モーメント $I_{\rm G} = \frac{2}{5} mR^2 \times \frac{1 - k^5}{1 - k^3}$

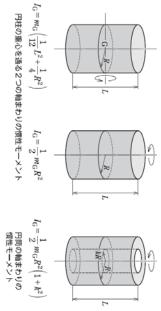
kR R

円の重心(中心)まわりの慣性 モーメント $I_{\rm G} = \frac{1}{2} mR^2$


中空円の重心(中心)まわりの 慣件モーメント $I_{\rm G} = \frac{1}{2} mR^2 \left(1 + k^2 \right)$

長方形の重心まわりの慣性モーメント $I_{\rm G} = \frac{1}{12} m \left(a^2 + b^2 \right)$


中空の長方形の重心まわりの惯性モーメント



三角形の重心まわりの慣性モーメント 中空の三角形の重心まわりの惯性モーメント

 $I_{\rm G} = m \left(\frac{1}{24} a^2 + \frac{1}{18} h^2 \right)$

 $I_{\rm G} = m \left(\frac{1}{24} a^2 + \frac{1}{18} h^2 \right) \left(1 + k^2 \right)$

 $I_{
m G}=rac{3}{10}\,m_{
m G}R^2$ 円錐の軸まわりの惯性モーメント